
     VISIT ANALOG.COM

Technical Article 

Broadband 3 GHz to  
20 GHz High Performance 
Integrated Mixer with  
0 dBm LO Drive
Xudong Wang, RFIC Design Engineer, 
Bill Beckwith, RFIC Design Engineer, 
Tom Schiltz, Design Engineering Manager, 
Weston Sapia, Senior Applications Engineer,  
and Michael Bagwell, RFIC Design Engineer  

Abstract
A broadband 3 GHz to 20 GHz SiGe passive mixer requiring only 
0 dBm LO drive is presented. A new balun structure is the key 
innovation that enables the wide RF bandwidth. The same balun 
topology is used on the IF, enabling a wide, 300 MHz to 9 GHz IF. 
This high performance double-balanced mixer can be used for 
upconversion or downconversion. The mixer is packaged in a 
tiny 2 mm × 3 mm, 12-lead QFN package and delivers 23 dBm IIP3 
and 14 dBm P1dB. The mixer consumes 132 mA on a 3.3 V supply.

Introduction
Wideband mixers have many applications in multifunction wireless transceiv-
ers, microwave transceivers, microwave backhaul, radar, and test equipment. 
A mixer with wide bandwidth allows a single mixer to be used in radio 
architectures with on-the-fly programmability of various radio parameters. 

The advanced silicon-based technologies such as CMOS and BiCMOS 
have demonstrated the capability for high performance mixers in relatively 
narrow-band applications. It is highly desirable to have broadband mixers 
that can be made with lumped elements or other structures compatible 
with IC fabrication techniques and geometries. Balanced mixers are the 
preferred topology because of their better overall performance compared to 
unbalanced mixers with respect to linearity, noise figure, and port-to-port 
isolation. Baluns are critical components used in single-balanced mixers 
and double-balanced mixers to convert RF, LO, and IF signals between 
balanced and unbalanced configurations. It is critical to realize baluns 
can be integrated in standard IC foundry processes so that broadband inte-
grated mixers can be produced. 

In this article, an innovative balun structure that can be easily implemented 
in silicon, GaAs, or any other integrated process is introduced. This balun 
topology exhibits much wider bandwidth than a traditional balun structure. 
A 3 GHz to 20 GHz high performance mixer is designed using the wideband 
balun in a 0.18 μm SiGe BiCMOS process.

Wideband Balun
The most important performance parameters for a mixer include the conver-
sion gain, linearity, noise figure, and operating bandwidth. The baluns used  
in integrated mixers have significant impact to all these mixers’ performances.  
The critical performance of an integrated balun includes operating frequency 
range, insertion loss, amplitude/phase balance, common-mode rejection 
ratio (CMRR), and physical size. 

Two popular balun structures in the integrated circuits applications are 
traditional planar-transformer baluns1,2 and Marchand baluns.3,4 Both of 
these baluns have good performance for narrow-band applications. The 
planar-transformer balun consists of two closely coupled transformers. The 
self-inductance and the resonant frequency of the inductors are two main 
bandwidth limiting factors. The self-inductance limits the bandwidth in the 
lower frequency end, and parasitic capacitance and asymmetry termination 
on the unbalanced and balanced terminals limit the high frequency end. The 
Marchand balun consists of four quarter wave transmission lines and usually 
needs large real estate on the chip. Miniature Marchand baluns have been 
demonstrated using interleave transformer layout in integrated circuits. The 
bandwidth of Marchand baluns is limited by the requirement of the electrical 
length of each line segment. When the electrical length is farther away 
from the required quarter wavelength, the amplitude and phase balance are 
degraded. In general, a well-designed transformer balun or Marchand balun 
can cover a frequency range of 3× to 4× maximum to minimum frequency 
ratio with reasonable performance.  

It is well known that the Ruthroff balun exhibits very wide bandwidth,5,6,7 
and many discrete component products have been developed based on 
the Ruthroff structure. However, no application of a similar structure for 
a microwave integrated circuit is found.
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Figure 1a shows a Ruthroff-style broadband balun schematic that can be 
easily constructed in a planar semiconductor process using three inductors. 
One layout example is shown in Figure 1b. In that layout, only two metal 
layers are needed, with one thick metal layer for three low loss inductors 
and an underpass metal layer for connections. When additional thick metal 
layers are available, the L1 and L3 can be vertically coupled, which results in 
smaller size and possibly better magnetic coupling between them.   

The broadband feature benefits from the simplicity of the structure, which 
results in less parasitic capacitance. The single-ended signal is voltage 
divided by L1 and L2. As a result, the positive port of the balun is directly 
half of the voltage of the single-ended signal with the same phase. The 
negative port of the balun is half of the voltage of the single-ended signal 
with 180° phase shift due to the negative coupling between L1 and L3.

Excellent amplitude and phase balance over a very wide bandwidth can be 
achieved. Figure 2 shows the simulated performance of a broadband balun 
configuration. The amplitude imbalance is the difference between S21 and 
S31, and the phase error is the phase difference of S21 and S31 away from 
the desired 180°. The proposed balun has very good amplitude balance and 
phase difference of close to 180° between 3 GHz and 20 GHz. Common-
mode rejection is important for a balun to be used in many applications 
such as balanced mixers and push-pull amplifiers. The simulated results 
shown in Figure 5b demonstrate that the 3-inductor balun has better than 
20 dB CMRR over the 3 GHz to 20 GHz range. 
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Figure 2. Simulated performance of the broadband balun. 
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Figure 1. Ruthroff-style broadband balun.
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Like the transformer balun topology, the bandwidth of the 3-inductor balun 
is limited by the inductance at the low frequency end and by the parasitic 
capacitance at the high frequency end. When the inductance is lower, the 
load impedance will have more impact to the voltage division between L1 
and L2 for port 3 and the transformed voltage for port 2. Although the ampli-
tude balance and phase difference are still acceptable at a low frequency 
range, the insertion loss is increased. As a result, lower terminal impedance 
or higher inductance will benefit the low frequency performance. At the high 
frequency end, the parasitic capacitance between L1 and L2 will degrade the 
transformer’s performance and results in large phase errors. Careful layout 
with the consideration of less parasitic capacitance can extend the balun’s 
high frequency operating range.      

The physical size of an integrated balun limits the low end of bandwidth.  
To explore the feasibility of the proposed balun structure for lower frequency 
application, a 0.5 GHz to 6 GHz balun is designed and compared with a tra-
ditional transformer-based balun, and the performance is shown in Figure 3.
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Figure 3. Simulated performance comparison of a traditional balun vs. a new balun.

Integrated Broadband RF/Microwave Mixer
A broadband double-balanced passive mixer has been designed in Jazz’s SiGe 
0.18 μm process with the 3-inductor balun configuration. The RF, IF, and LO 
ports of the mixer are 50 Ω single-ended with baluns integrated for the RF and 
IF ports. The integrated RF balun is optimized to cover the 3 GHz to 20 GHz RF 
frequency range. The integrated IF balun is optimized to cover a very wide, 
500 MHz to 9 GHz, frequency range. The single-ended LO signal is converted 
to a differential signal internally by an active amplifier circuit to reduce chip 
size. Two stage broadband amplifiers using high speed NPNs provide enough 
signal voltage swing to the MOSFET gates of the passive mixer with only 0 dBm 
input power over the 1 GHz to 20 GHz frequency range.

RF IF

LO

Figure 4. Broadband double-balanced passive mixer. 

The mixer is packaged in a tiny 2 mm × 3 mm QFN with flipchip using cop-
per pillars for the interconnections. The copper pillar connection has very 
low additional parasitics to preserve the broadband performance from the 
silicon. The mixer is biased with 3.3 V supply, and the current consumption 
is 132 mA at room temperature. The measured conversion loss and IIP3 
performance is shown in Figure 5.8 The mixer’s RF, LO, and IF ports are well 
matched over its wide operating frequency range. Figure 6 shows the return 
loss of these ports. It should be noted that the RF return loss is dependent 
on the IF port impedance, and the results in Figure 6a are measured with an 
IF frequency of 0.9 GHz.  
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Figure 6. Measured return loss of the broadband double-balanced passive mixer. 

Table 1. Comparison of Our Broadband Mixer and Similar 
Products on the Market 

Key Spec This Mixer HMC 144LC4 HMC 663LC3  SIM-193H+

Tech SiGe GaAs GaAs Hybrid

RF (GHz) 3 to 20 6 to 20 7 to 12 7.3 to 19

IF (GHz) 0.5 to 9 DC to 3 DC to 4 DC to 7.5

LO Input Power 
(dBm) 0 17 21 17

Conversion Loss 
(dB) 9 10.2 8 7.6

IIP3 (dBm) 23 23 30 19

Noise Figure (dB) 9 10.5 10 7.6

Input P1dB (dBm) 14 15 20 14

LO RF Leakage 
(dBm) –30 –10 –20 –11

Package 
(mm × mm) 2 × 3 4 × 4 3 × 3 5.1 × 4.6

Compared with broadband mixers on the market (such as those in Table 1), the 
mixer designed with the 3-inductor baluns achieves the widest bandwidth 
for both the RF and IF range. It requires the lowest LO power with the high-
est integration level. The overall performance is superior than any reported 
product or published broadband mixer product.

Conclusion
A Ruthroff-style broadband balun structure that fits the planar implemen-
tation of modern semiconductor process is introduced in this article. A 
high performance double-balanced mixer using the broadband baluns is 
designed and measured. 
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